Publikacje

Dotychczas nasza grupa wraz ze współpracownikami opublikowała następujące prace:

2012

  1. M. Stobińska, F. Töppel, P. Sekatski, M. V. Chekhova, Entanglement witnesses and measures for bright squeezed vacuum, Phys. Rev. A 86, 022323 (2012).
    [PDF]
  2. P. Sekatski, N. Sangouard, M. Stobińska, F. Bussieres, M. Afzelius, N. Gisin, Proposal for exploring macroscopic entanglement with a single photon and coherent states, Phys. Rev. A 86, 060301(R) (2012).
    [PDF]
  3. M. Stobińska, R. Alicki, Single-photon single-ion interaction in free space configuration in front of a parabolic mirror, Open Syst. Inf. Dyn. 19, 1250023 (2012).
    [PDF]
  4. M. Stobińska, F. Töppel, P. Sekatski, A. Buraczewski, M. Żukowski, M. V. Chekhova, G. Leuchs, N. Gisin, Filtering of the absolute value of photon-number difference for two-mode macroscopic quantum states,Phys. Rev. A 86, 063823 (2012).
    [PDF]

2013

  1. M. Stobińska, W. Laskowski, M. Wieśniak, M. Żukowski, Multi-photon quantum interference with high visibility using multiport beam splitters, Phys. Rev. A 87, 053828 (2013).
    [PDF]
  2. G. Alber, J. Z. Bernád, M. Stobińska, L. L. Sánchez-Soto, G. Leuchs, QED with a parabolic mirror, Phys. Rev. A 88, 023825 (2013).
    [PDF]
  3. T. Kupka, M. Stachów, E. Chełmecka, K. Pasterny, M. Stobińska, L. Stobiński, J. Kaminský, Efficient Modeling of NMR Parameters in Carbon Nanosystems, J. Chem. Theory Comput. 9, 4275 (2013).

2014

  1. K. Yu. Spasibko, F. Töppel, T. Sh. Iskhakov, M. Stobińska, M. V. Chekhova, G. Leuchs, Interference of macroscopic beams on a beam splitter: phase uncertainty converted into photon-number uncertainty,New J. Phys. 16, 013025 (2014).
    [PDF] (Open Access)
  2. M. Stobińska, F. Töppel, P. Sekatski, A. Buraczewski, Towards loophole-free Bell inequality test with preselected unsymmetrical singlet states of light, Phys. Rev. A 89, 022119 (2014).
    [PDF]
  3. K. Bartkiewicz, A. Černoch, K. Lemr, J. Soubusta, M. Stobińska, Efficient Amplification of Photonic Qubits by Optimal Quantum Cloning, Phys. Rev. A 89, 062322 (2014).
    [PDF]
  4. M. Stobińska, Feasible quantum engineering of quantum multiphoton superpositions, Opt. Commun. 337 (Special Issue on Macroscopic Quantumness), 83 (2015).
    [PDF]
  5. A. Miranowicz, J. Bajer, M. Paprzycka, Y.-X. Liu, A. M. Zagoskin, F. Nori, State-dependent photon blockade via quantum-reservoir engineering,Phys. Rev. A 90, 033831 (2014).
    [PDF]

2015

  1. F. Töppel, M. Stobińska, Loss-tolerant hybrid measurement test of CHSH inequality with weakly amplified N00N states, J. Phys. A: Math. Theor. 48, 075306 (2015).
    [PDF]
  2. K. Rosołek, M. Stobińska, M. Wieśniak, M. Żukowski, Two Copies of the Einstein-Podolsky-Rosen State of Light Lead to Refutation of EPR Ideas,Phys. Rev. Lett. 114, 100402 (2015).
    [PDF]

2016

  1. H. Nakazato, S. Pascazio, M. Stobińska, K. Yuasa, Photon distribution at the output of a beam splitter for imbalanced input states, Phys. Rev. A 93, 023845 (2016).
    [PDF]
  2. O. Voronych, A. Buraczewski, M. Matuszewski, M. Stobińska, Exciton-polariton localized wave packets in a microcavity, Phys. Rev. B 93, 245310 (2016).
    [PDF]
  3. A. Rutkowski, A. Buraczewski, P. Horodecki, M. Stobińska, Quantum steering inequality with tolerance for measurement-setting-errors: experimentally feasible signature of unbounded violation, Phys. Rev. Lett. 118, 020402 (2017).
    [PDF]

2017

  1. O. Voronych, A. Buraczewski, M. Matuszewski, M. Stobińska, Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity, Comp. Phys. Commun. 215, 246 (2017).
    [PDF]
  2. A. Gianfrate, L. Dominici, O. Voronych, M. Matuszewski, M. Stobińska, D. Ballarini, M. De Giorgi, G. Gigli, D. Sanvitto, Superluminal X-waves in a polariton quantum fluid, Light: Science & Applications 7, e17119 (2018).
    [PDF]

2018

  1. Ch.-R. Mann, T. J. Sturges, G. Weick, W. L. Barnes, E. Mariani, Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces, Nature Communications 9, 2194 (2018).
    [PDF]

2019

  1. J. Pietraszewicz, M. Stobińska, P. Deuar, Correlation evolution in dilute Bose-Einstein condensates after quantum quenches, Phys. Rev. A 99, 023620 (2019).
    [PDF]
  2. M. Stobińska, A. Buraczewski, M. Moore, W. R. Clements, J. J. Renema, S. W. Nam, T. Gerrits, A. Lita, W. S. Kolthammer, A. Eckstein, I. A. Walmsley, Quantum interference enables constant-time quantum information processing, Sci. Adv. 5, eaau9674 (2019).
    [PDF]
  3. C. A. Downing, T. J. Sturges, G. Weick, M. Stobińska, L. Martín-Moreno, Topological Phases of Polaritons in a Cavity Waveguide, Phys. Rev. Lett. 123, 217401 (2019).
    [PDF]
  4. T. J. Sturges, M. D. Anderson, A. Buraczewski, M. Navadeh-Toupchi, A. F. Adiyatullin, F. Jabeen, D. Y. Oberli, M. T. Portella-Oberli, M. Stobińska, Anderson localisation in steady states of microcavity polaritons, Sci. Rep. 9, 19396 (2019).
    [PDF]

2020

  1. G. S. Thekkadath, M. E. Mycroft, B. A. Bell, C. G. Wade, A. Eckstein, D. S. Phillips, R. B. Patel, A. Buraczewski, A. E. Lita, T. Gerrits, S. W. Nam, M. Stobińska, A. I. Lvovsky, I. A. Walmsley, Quantum-enhanced interferometry with large heralded photon-number states, npj Quantum Inf. 6, 89 (2020).
    [PDF]
  2. T. J. Sturges, T. Repän, C. Downing, C. Rockstuhl, M. Stobińska, Extreme renormalisations of dimer eigenmodes by strong light-matter coupling, New J. Phys. 22, 103001 (2020).
    [PDF]

2021

  1. T. Sturges, T. McDermott, A. Buraczewski, W. R. Clements, J. J. Renema, S. W. Nam, T. Gerrits, A. Lita, W. S. Kolthammer, A. Eckstein, I. A. Walmsley, M. Stobińska, Quantum simulations with multiphoton Fock states, npj Quantum Inf. 7, 91 (2021).
    [PDF]

2022

  1. T. Sturges, M. Stobińska, A new tool for modelling lattices of organic polaritons, New J. Phys. 24, 053046 (2022).
    [PDF]

2023

  1. M. Mycroft, T. McDermott, A. Buraczewski, M. Stobińska, Proposal for distribution of multi-photon entanglement with optimal rate-distance scaling, Phys. Rev. A 107, 012607 (2023).
    [PDF]
  2. M. Siemaszko, A. Buraczewski, B. Le Saux, M. Stobińska, Rapid training of quantum recurrent neural network, accepted to Quantum Mach. Intell. (2023).
    [PDF]

Preprinty: